Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Angew Chem Int Ed Engl ; 63(18): e202402327, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38467561

RESUMO

Metallic zinc is a promising anode material for rechargeable aqueous multivalent metal-ion batteries due to its high capacity and low cost. However, the practical use is always beset by severe dendrite growth and parasitic side reactions occurring at anode/electrolyte interface. Here we demonstrate dynamic molecular interphases caused by trace dual electrolyte additives of D-mannose and sodium lignosulfonate for ultralong-lifespan and dendrite-free zinc anode. Triggered by plating and stripping electric fields, the D-mannose and lignosulfonate species are alternately and reversibly (de-)adsorbed on Zn metal, respectively, to accelerate Zn2+ transportation for uniform Zn nucleation and deposition and inhibit side reactions for high Coulombic efficiency. As a result, Zn anode in such dual-additive electrolyte exhibits highly reversible and dendrite-free Zn stripping/plating behaviors for >6400 hours at 1 mA cm-2, which enables long-term cycling stability of Zn||ZnxMnO2 full cell for more than 2000 cycles.

2.
J Environ Manage ; 356: 120668, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492419

RESUMO

Grazing causes great disturbances in grassland ecosystems and may change the abundance, diversity, and ecological function of soil biota. Because of their important role in nutrient cycling and as good environmental indicators, nematodes are very representative soil organisms. However, the mechanisms by which grazing intensity, livestock type, duration, and environmental factors (e.g., climate and edaphic factors) affect soil nematodes remain poorly understood. In this study, we collected 1964 paired observations all over the world from 53 studies to clarify the grazing response patterns of soil nematodes and their potential mechanisms. Overall, grazing significantly decreased the abundance of bacterial-feeding (BF) nematodes (-16.54%) and omnivorous-predatory (OP) nematodes (-36.81%), and decreased nematode community diversity indices (Shannon-Weiner index: -4.33%, evenness index: -9.22%, species richness: -5.35%), but had no effect on ecological indices under a global regional scale. The response of soil nematodes to grazing varied by grazing intensity, animals, and duration. Heavy grazing decreased OP nematode abundance, but had no effect on the abundance of other trophic groups, or on diversity or ecological indices. Grazing by small animals had stronger effects than that by large animals and mixed-size animals on BF, fungal-feeding (FF), plant-feeding (PF) and OP nematodes, the Shannon-Wiener index, and the species richness index. The abundance of FF and OP nematodes influenced significantly under short-term grazing. The evenness index decreased significantly under long-term grazing (>10 years). Climate and edaphic factors impacted the effects of grazing on nematode abundance, diversity, and ecological indices. When resources (i.e., rain, heat, and soil nutrients) were abundant, the negative effects of grazing on nematodes were reduced; under sufficiently abundant resources, grazing even had positive effects on soil nematode communities. Thus, the influence of grazing on soil nematode communities is resource-dependent. Our study provides decision makers with grazing strategies based on the resource abundance. Resource-poor areas should have less grazing, while resource-rich areas should have more grazing to conserve soil biodiversity and maintain soil health.


Assuntos
Ecossistema , Nematoides , Animais , Pradaria , Solo , Nematoides/fisiologia , Biodiversidade , Bactérias
3.
J Mater Chem B ; 12(5): 1330-1343, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38230443

RESUMO

Mechanical mismatch between interventional intubation tubes and human tissues often triggers inevitable friction and causes secondary injury to patients during interventional therapy. Herein, we propose a fabrication strategy of a self-lubricating polyvinyl alcohol (PVA) tube by industrial extrusion technology followed by simple infiltration with water. First, biocompatible glycerin was introduced to weaken the intrinsic hydrogen interaction of PVA by new molecular complexation, broadening the gap between the melting and decomposition temperatures and enabling the stable extrusion of the PVA tube. Subsequently, the as-prepared PVA tube was infiltrated with an aqueous solution to construct a strong hydrogen bonding network between PVA and water molecules, forming a soft hydration layer similar to the upper epithelium layer of mucosa. Benefiting from the solid and liquid properties of the hydration layer as well as the small proportion relative to the whole, the infiltrated PVA tube exhibited excellent hydration lubrication behavior and robust mechanical property. The friction coefficient, tensile strength and elongation at break were measured to be 0.05, 26.2 MPa and 654%, respectively, surpassing the values of 0.5, 16.4 MPa and 240% observed in a commercial polyvinyl chloride tube. In vitro, the PVA intubation tube demonstrated significant biocompatibility, and short-term exposure exhibited minimal impacts on the morphology and proliferation of L929 cells. Ultimately, the potential of the infiltrated PVA tube for interventional intubation was demonstrated successfully using an in vivo rabbit model, providing a new idea for the follow-up development of interventional intubation tubes.


Assuntos
Intubação Intratraqueal , Álcool de Polivinil , Animais , Humanos , Coelhos , Resistência à Tração , Mucosa , Água
4.
Sensors (Basel) ; 23(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38139476

RESUMO

Radar data can be presented in various forms, unlike visible data. In the field of radar target recognition, most current work involves point cloud data due to computing limitations, but this form of data lacks useful information. This paper proposes a semantic segmentation network to process high-dimensional data and enable automatic radar target recognition. Rather than relying on point cloud data, which is common in current radar automatic target recognition algorithms, the paper suggests using a radar heat map of high-dimensional data to increase the efficiency of radar data use. The radar heat map provides more complete information than point cloud data, leading to more accurate classification results. Additionally, this paper proposes a dimension collapse module based on a vision transformer for feature extraction between two modules with dimension differences during dimension changes in high-dimensional data. This module is easily extendable to other networks with high-dimensional data collapse requirements. The network's performance is verified using a real radar dataset, showing that the radar semantic segmentation network based on a vision transformer has better performance and fewer parameters compared to segmentation networks that use other dimensional collapse methods.

5.
J Environ Manage ; 348: 119375, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37883834

RESUMO

Grasslands provide multiple ecosystem services (ESs) including provisioning, regulating, supporting, and cultural services that are largely affected by livestock grazing. Linking plant functional traits (PFTs) to ecosystem processes and functions has attracted extensive ecological research to explore the responses and inter-relations of ecosystem services to environmental and management changes. However, little information is available on the links between PFTs and ESs in most ecosystems. We conducted a grazing experiment to investigate the response of PFTs at different levels, including in plant organs (leaves and stems), individual plants, and the overall community in a typical steppe region of Inner Mongolia. Additionally, we examined the effect of animal grazing at four intensities (nil, light, moderate, and heavy) and explored the dynamic interconnections between PFTs and ecosystem services in grasslands. Our analysis revealed that the highest total ecosystem service and provisioning service were achieved under light- and moderate-grazing treatments, respectively. Heavy grazing also increased provisioning service but with a large decline in regulating and total ecosystem services. These changes in ESs were closely associated with grazing-induced variations in PFTs. Compared to no grazing, light grazing increased plant size-related functional traits, such as height, leaf length, leaf area, stem length, and the ratio of stem length to diameter. In contrast, heavy grazing decreased these PFTs. Provisioning and regulating services were determined by plant above-ground community function and structural properties, while supporting service was jointly affected by the below-ground community and soil properties. Our results indicate that light grazing should be recommended for the best total ESs, although moderate grazing may lead to high short-term economic benefits. Moreover, PFTs are powerful indicators for provisioning and regulating services. These findings provide a valuable reference for developing effective management practices to achieve targeted ESs using PFTs as indicators.


Assuntos
Ecossistema , Pradaria , Animais , Plantas , China , Herbivoria , Solo/química
6.
Mol Ecol ; 32(24): 6924-6938, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37873915

RESUMO

Environmental circumstances shaping soil microbial communities have been studied extensively. However, due to disparate study designs, it has been difficult to resolve whether a globally consistent set of predictors exists, or context-dependency prevails. Here, we used a network of 18 grassland sites (11 of those containing regional plant productivity gradients) to examine (i) if similar abiotic or biotic factors predict both large-scale (across sites) and regional-scale (within sites) patterns in bacterial and fungal community composition, and (ii) if microbial community composition differs consistently at two levels of regional plant productivity (low vs. high). Our results revealed that bacteria were associated with particular soil properties (such as base saturation) and both bacteria and fungi were associated with plant community composition across sites and within the majority of sites. Moreover, a discernible microbial community signal emerged, clearly distinguishing high and low-productivity soils across different grasslands independent of their location in the world. Hence, regional productivity differences may be typified by characteristic soil microbial communities across the grassland biome. These results could encourage future research aiming to predict the general effects of global changes on soil microbial community composition in grasslands and to discriminate fertile from infertile systems using generally applicable microbial indicators.


Assuntos
Pradaria , Microbiota , Microbiologia do Solo , Microbiota/genética , Fungos/genética , Bactérias/genética , Plantas/microbiologia , Solo
7.
J Environ Manage ; 347: 119078, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757683

RESUMO

Grazing causes changes in microbiome metabolic pathways affecting plant growth and soil physicochemical properties. However, how grazing intensity affects microbial processes is poorly understood. In semiarid steppe grassland in northern China, shotgun metagenome sequencing was used to investigate variations in soil carbon (C) and nitrogen (N) cycling-related genes after six years of the following grazing intensities: G0, control, no grazing; G1, 170 sheep days ha-1 year-1; G2, 340 sheep days ha-1 year-1; and G3, 510 sheep days ha-1 year-1. Taxa and functions of the soil microbiome associated with the C cycle decreased with increasing grazing intensity. Abundances of genes involved in C fixation and organic matter decomposition were altered in grazed sites, which could effects on vegetation decomposition and soil dissolved organic carbon (DOC) content. Compared with the control, the abundances of nitrification genes were higher in G1, but the abundances of N reduction and denitrification genes were lower, suggesting that light grazing promoted nitrification, inhibited denitrification, and increased soil NO3- content. Q-PCR further revealed that the copies of genes responsible for carbon fixation (cbbL) and denitrification (norB) decreased with increasing grazing intensity. The highest copy numbers of the nitrification genes AOA and AOB were in G1, whereas copy numbers of the denitrification gene nirK were the lowest. A multivariate regression tree indicated that changes in C fixation genes were linked to changes in soil DOC content, whereas soil NO3- content was linked with nitrification and denitrification under grazing. Thus, genes associated with C fixation and the N cycle affected how C fixation and N storage influenced soil physicochemical properties under grazing. The findings indicate that grazing intensity affected C and N metabolism. Proper grassland management regimes (e.g., G1) are beneficial to the balances between ecological protection of grasslands and plant production in the semiarid steppe.


Assuntos
Pradaria , Solo , Animais , Ovinos , Solo/química , Metagenoma , Carbono/análise , Nitrogênio/análise , Microbiologia do Solo
8.
J Biol Dyn ; 17(1): 2244968, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37581613

RESUMO

We propose a hand, foot and mouth disease (HFMD) transmission model for children with behaviour change and imperfect quarantine. The symptomatic and quarantined states obey constant behaviour change while others follow variable behaviour change depending on the numbers of new and recent infections. The basic reproduction number R0 of the model is defined and shown to be a threshold for disease persistence and eradication. Namely, the disease-free equilibrium is globally asymptotically stable if R0≤1 whereas the disease persists and there is a unique endemic equilibrium otherwise. By fitting the model to weekly HFMD data of Shanghai in 2019, the reproduction number is estimated at 2.41. Sensitivity analysis for R0 shows that avoiding contagious contacts and implementing strict quarantine are essential to lower HFMD persistence. Numerical simulations suggest that strong behaviour change not only reduces the peak size and endemic level dramatically but also impairs the role of asymptomatic transmission.


Assuntos
Doença de Mão, Pé e Boca , Criança , Humanos , Doença de Mão, Pé e Boca/epidemiologia , Modelos Biológicos , China/epidemiologia , Número Básico de Reprodução , Quarentena
9.
Sci Rep ; 13(1): 846, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646766

RESUMO

Bridges might experience many defects during use, such as pavement cracks and reinforcement corrosion, which easily produce an accumulated impact that threatens bridge safety. Thus, there is a need for the regular inspection and maintenance of bridges. This paper presents a bridge maintenance system (BMS) based on building information modelling (BIM), which is utilized in bridge defect information management using a digitalization method. A bridge defect three-dimensional BIM (BIM3D) library is established and combined with a bridge model to visualize bridge defect conditions. Based on bridge inspection data, bridge defect information is digitally classified and encoded according to the international framework for dictionaries (IFD) standard and used to establish a database. An evaluation of bridge technical conditions is performed, and the results are graded and displayed in different colours, reflecting the visualization function of BIM technology. Maintenance suggestions are provided according to the range of bridge technical condition scores, reflecting the informatization function of BIM technology. With the Xinjiang Cocodala Bridge in China as a case study, a bridge BIM3D model and inspection data are imported into the BMS to utilize the functions of 'visualization of bridge defect conditions', 'evaluation of bridge technical conditions' and 'recommendations of bridge maintenance methods'.

10.
Front Plant Sci ; 13: 995074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407579

RESUMO

Heavy grazing significantly reduces Stipa grandis growth. To enhance our understanding of plant responses to heavy grazing, we conducted transcriptomic, proteomic, and metabolic analyses of the leaves of non-grazed plants (NG) and heavy-grazing-induced dwarf plants (HG) of S. grandis. A total of 101 metabolites, 167 proteins, and 1,268 genes differed in abundance between the HG and NG groups. Analysis of Kyoto Encyclopedia of Genes and Genomes pathways among differentially accumulated metabolites (DAMs) revealed that the most enriched pathways were flavone and flavonol biosynthesis, tryptophan metabolism, and phenylpropanoid biosynthesis. An integrative analysis of differentially expressed genes (DEGs) and proteins, and DAMs in these three pathways was performed. Heavy-grazing-induced dwarfism decreased the accumulation of DAMs enriched in phenylpropanoid biosynthesis, among which four DAMs were associated with lignin biosynthesis. In contrast, all DAMs enriched in flavone and flavonol biosynthesis and tryptophan metabolism showed increased accumulation in HG compared with NG plants. Among the DAMs enriched in tryptophan metabolism, three were involved in tryptophan-dependent IAA biosynthesis. Some of the DEGs and proteins enriched in these pathways showed different expression trends. The results indicated that these pathways play important roles in the regulation of growth and grazing-associated stress adaptions of S. grandis. This study enriches the knowledge of the mechanism of heavy-grazing-induced growth inhibition of S. grandis and provides valuable information for restoration of the productivity in degraded grassland.

11.
Molecules ; 27(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36144573

RESUMO

The lungs and large intestine can co-regulate inflammation and immunity through the lung-gut axis, in which the transportation of the gut microbiota and metabolites is the most important communication channel. In our previous study, not only did the composition of the gut microbiota and metabolites related to inflammation change significantly during the transition from ulcerative colitis (UC) to colorectal cancer (CRC), but the lung tissues also showed corresponding inflammatory changes, which indicated that gastrointestinal diseases can lead to pulmonary diseases. In order to elucidate the mechanisms of this lung-gut axis, metabolites in bronchoalveolar lavage fluid (BALF) and lung tissues were detected using UHPLC-Q-TOF-MS/MS technology, while microbiome characterization was performed in BALF using 16S rDNA sequencing. The levels of pulmonary metabolites changed greatly during the development of UC to CRC. Among these changes, the concentrations of linoleic acid and 7-hydroxy-3-oxocholic acid gradually increased during the development of UC to CRC. In addition, the composition of the pulmonary microbiota also changed significantly, with an increase in the Proteobacteria and an obvious decrease in the Firmicutes. These changes were consistent with our previous studies of the gut. Collectively, the microbiota and metabolites identified above might be the key markers related to lung and gut diseases, which can be used as an indication of the transition of diseases from the gut to the lung and provide a scientific basis for clinical treatment.


Assuntos
Colite Ulcerativa , Neoplasias Colorretais , Colite Ulcerativa/tratamento farmacológico , Neoplasias Colorretais/etiologia , DNA Ribossômico , Humanos , Inflamação , Ácido Linoleico , Pulmão , Espectrometria de Massas em Tandem
12.
Toxics ; 10(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35878279

RESUMO

Heavy metals are major pollutants that pose threats to wetland environments. In the present study, surface sediments from wetlands vegetated by invasive species Spartina alterniflora in the Yellow River Delta were collected and determined for the mass fractions of Co, Ni, As, Cd and Pb. Results showed mass fractions of Co, Ni, As, Cd and Pb in the sediments of the S. alterniflora communities ranged from 8.5 to 16.0, 13.9−27.9, 3.2−13.8, 0.08−0.24, and 17.6−37.5 mg/kg dw, respectively, generally presenting an order of Pb > Ni > Co > As > Cd. The levels of heavy metals in sediments in the S. alterniflora communities were higher than those in the wetland vegetated by the native plant species Suaeda heteroptera. Correlations among metal elements were highly significant, suggesting that they might have the same sources. Clay and TOC were important factors affecting the spatial distribution of metals. The Igeo values of the investigated elements in the sediments were frequently lower than 0, revealing the slight pollution status of these metals. Relatively slight values of Eri and RI suggested that the potential ecological risks caused by the 5 metals were low. Our findings could provide a better understanding of the correlation between metal pollution and bio-invasion in wetland ecosystems.

13.
Front Bioeng Biotechnol ; 10: 895766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694231

RESUMO

Advanced polymer processing has received extensive attention due to its unique control of complex force fields and customizability, and has been widely applied in various fields, especially in preparation of functional devices for bioengineering and biotechnology. This review aims to provide an overview of various advanced polymer processing techniques including rotation extrusion, electrospinning, micro injection molding, 3D printing and their recent progresses in the field of cell proliferation, bone repair, and artificial blood vessels. This review dose not only attempts to provide a comprehensive understanding of advanced polymer processing, but also aims to guide for design and fabrication of next-generation device for biomedical engineering.

14.
J Colloid Interface Sci ; 624: 704-712, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696788

RESUMO

Platinum-based catalysts are regarded as the Holy Grail of hydrogen evolution reaction (HER). As a benchmark catalyst for HER, the commercial Pt/C catalyst has low Pt utilization efficiency and high cost, which hinders its commercialization. Atomic clusters-based catalysts show high efficiency of atom utilization and high performance toward electrocatalysis. Herein, an environmentally friendly preparation strategy is proposed to construct Pt atomic clusters on the polyoxometalates-carbon black (Pt-POMs-CB) support. Density functional theory (DFT) calculations reveal that the Pt clusters can be stably anchored on the surface with the driving force arising from the charge transfer from Pt atoms to O atoms of the POMs. Benefiting from metal-support interaction, Pt atomic clusters embedded in silicotungstic acid-carbon black (Pt-STA-CB) exhibit excellent HER activity with an overpotential of 33.8 mV at 10 mA cm-2, and high mass activity is 1.62 A mg-1Pt at 33.8 mV, which is 5.4 times that of the commercial Pt/C. In addition, the catalyst displays high stability of 800 h at current density of 500 mA cm-2. It provides a platform for facile and low-cost preparation of stable Pt-based catalysts, which is crucial for their large-scale production and practical application in the industry.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35421697

RESUMO

As a prescription for treating lung inflammation and intestinal diseases, Xuanbai Chengqi Decoction (XBCQD) in clinical practice can effectively treat COPD with excessive heat in the lung and fu-organs, which is characterized by phlegm-heat accumulation in the lung and constipation. This study aims to find the potential biomarkers of COPD with excessive heat in the lung and fu-organs from two aspects of lung and intestine based on metabolomics and microbiota analysis, and to evaluate the efficacy of XBCQD as well as to explore the mechanism of drug function according the regulating effect of drugs on these markers. The HPLC-Q-TOF-MS/MS, 16SrDNA technology and multiple statistical methods were used to trace the process of disease and curative effect with XBCQD. Results showed that the onset and development of disease was associated with the imbalance of 41 differential metabolites in plasma, bronchoalveolar lavage fluid and feces and 82 bacteria at the levels of phylum, class, order, family and genus from lung and intestine, including Escherichia-Shigella. However, after treatment with XBCQD, 30 differential metabolites mainly involving in the metabolism of linoleic acid, taurine and hypotaurine metabolism, arachidonic acid metabolism, biosynthesis of primary bile acids, tryptophan metabolism, arginine and proline metabolism and 65 pulmonary and intestinal bacteria at all levels were reversed in the drug group. In addition, the results of the correlation analysis showed that specific microbiota from lung and intestine and reversed differential metabolites had a significant correlation, and they could affect each other in the course of disease occurrence and treatment. This study preliminarily confirmed that XBCQD can be used to treat COPD with excessive heat in the lung and fu-organs through lung-intestine simultaneous treatment. It also provided new strategies for the treatment of lung diseases or intestinal diseases, and new research ideas for the evaluation of drug efficacy.


Assuntos
Medicamentos de Ervas Chinesas , Microbiota , Doença Pulmonar Obstrutiva Crônica , Biomarcadores/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Temperatura Alta , Humanos , Pulmão/metabolismo , Metaboloma , Metabolômica/métodos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Espectrometria de Massas em Tandem
16.
Small ; 17(44): e2103737, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34553487

RESUMO

Low-cost bifunctional nonprecious metal catalysts toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical for the commercialization of rechargeable zinc-air batteries (ZABs). However, the preparation of highly active and durable bifunctional catalysts is still challenging. Herein, an efficient catalyst is reported consisting of FeCo nanoparticles embedded in N-doped carbon nanotubes (FeCo NPs-N-CNTs) by an in situ catalytic strategy. Due to the encapsulation and porous structure of N-doped carbon nanotubes, the catalyst shows high activity toward ORR and excellent durability. Furthermore, to enhance the OER activity, CoFe-layer double hydroxide (CoFe-LDH) is coupled with FeCo NPs-N-CNTs by in situ reaction approach. As the air electrode for rechargeable ZABs, the cell with CoFe-LDH@FeCo NPs-N-CNTs catalyst exhibits high open-circuit potential (OCP) of 1.51 V, high power density of 116 mW cm-2 , and remarkable durability up to 100 h, demonstrating its great promise for the practical application of the rechargeable ZABs.

17.
ACS Appl Mater Interfaces ; 13(9): 11332-11343, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33625832

RESUMO

Renewable biobased aerogels display a promising potential to fulfill the surging demand in various industrial sectors. However, its inherent low mechanical robustness, flammability, and lack of functionality are still huge obstacles in its practical application. Herein, a novel integrated leather solid waste (LSW)/poly(vinyl alcohol) (PVA)/polyaniline (PANI) aerogel with high mechanical robustness, flame retardancy, and electromagnetic interference (EMI) shielding performance was successfully prepared. Amino carboxyl groups in LSW could be effectively exposed by solid-state shear milling (S3 M) technology to form strong hydrogen-bond interactions with the PVA molecular chains. This led to a change in the compressive strength and the temperature of the initial dimensional change to 15.6 MPa and 112.7 °C at a thickness of 2.5 cm, respectively. Moreover, LSW contains a large number of N elements, which ensures a nitrogen-based flame-retardant mechanism and increase in the limit oxygen index value of LSW/PVA aerogel to 32.0% at a thickness of 2.5 mm. Notably, by the cyclic coating method, a conductive PANI layer could be polymerized on the surface of LSW/PVA aerogel, which led to the construction of a sandwich structure with impressive EMI shielding capability. The EMI shielding effectiveness (SE) reached more than 40 dB, and the specific shielding effectiveness (SSE) reached 73.0 dB cm3 g-1. The inherent dipoles in collagen fibers and the conductive PANI synergistically produced an internal multiple reflection and absorption mechanism. The comprehensive performance of LSW/PVA/PANI aerogel not only demonstrates a new strategy to recycle LSW in a more value-added way but also sheds some more light on the development of biomass aerogels with high-performance, environmentally friendly, and cost-effective properties.

18.
Angew Chem Int Ed Engl ; 60(1): 259-267, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32964599

RESUMO

To ensure sustainable hydrogen production by water electrolysis, robust, earth-abundant, and high-efficient electrocatalysts are required. Constructing a hybrid system could lead to further improvement in electrocatalytic activity. Interface engineering in composite catalysts is thus critical to determine the performance, and the phase-junction interface should improve the catalytic activity. Here, we show that nickel diphosphide phase junction (c-NiP2 /m-NiP2 ) is an effective electrocatalyst for hydrogen production in alkaline media. The overpotential (at 10 mA cm-2 ) for NiP2 -650 (c/m) in alkaline media could be significantly reduced by 26 % and 96 % compared with c-NiP2 and m-NiP2 , respectively. The enhancement of catalytic activity should be attributed to the strong water dissociation ability and the rearrangement of electrons around the phase junction, which markedly improved the Volmer step and benefited the reduction process of adsorbed protons.

19.
J Environ Manage ; 250: 109508, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31518797

RESUMO

Although academia has concentrated on issues related to green building recently, Green Star, considered as the primary green rating system in New Zealand, has not caught adequate attention, leading to its slow development with a modest number of certified projects. This research aims to explore the perspectives of the key stakeholders in the New Zealand construction industry towards the use of Green Star, as well as its relationship and possible integration with Building Information Modelling (BIM). Specifically, six themes including 1) benefits of Green Star certification uptake; 2) challenges/barriers to Green Star certification uptake; 3) solutions for Green Star certification uptake; 4) relationship between BIM adoption and Green Star certification uptake; 5) barriers/challenges to the integration of BIM between Green Star; and 6) solutions for the integration between BIM and Green Star were highlighted. The data was collected from 21 semi-structured interviews with industry experts. The results identified a range of benefits and barriers/challenges to the use of Green Star. The research offers a variety of suggestions to encourage Green Star development, with more extensive education playing a critical role, combined with greater integration of BIM with Green Star. The results could be considered baseline information for the construction professionals and academia to have effective strategies towards BIM and Green Star adoption.


Assuntos
Indústria da Construção , Certificação , Nova Zelândia
20.
Biomed Res Int ; 2018: 9473542, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30046614

RESUMO

Bacillus atrophaeus GQJK17 was isolated from the rhizosphere of Lycium barbarum L. in China, which was shown to be a plant growth-promoting rhizobacterium as a new biological agent against pathogenic fungi and gram-positive bacteria. We present its biological characteristics and complete genome sequence, which contains a 4,325,818 bp circular chromosome with 4,181 coding DNA sequences and a G+C content of 43.3%. A genome analysis revealed a total of 8 candidate gene clusters for producing antimicrobial secondary metabolites, including surfactin, bacillaene, fengycin, and bacillibactin. Some other antimicrobial and plant growth-promoting genes were also discovered. Our results provide insights into the genetic and biological basis of B. atrophaeus strains as a biocontrol agent for application in agriculture.


Assuntos
Bacillus/genética , Genoma Bacteriano , Desenvolvimento Vegetal , Rizosfera , Agentes de Controle Biológico , China , Fungos , Lycium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA